Numerical Integration of Stochastic Differential Equations with Nonglobally Lipschitz Coefficients

نویسندگان

  • G. N. Milstein
  • Michael V. Tretyakov
چکیده

We propose a new concept which allows us to apply any numerical method of weak approximation to a very broad class of stochastic differential equations (SDEs) with nonglobally Lipschitz coefficients. Following this concept, we discard the approximate trajectories which leave a sufficiently large sphere. We prove that accuracy of any method of weak order p is estimated by ε + O(hp), where ε can be made arbitrarily small with increasing radius of the sphere. The results obtained are supported by numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solutions of Stochastic Differential Equations Driven by Poisson Random Measure with Non-Lipschitz Coefficients

The numerical methods in the current known literature require the stochastic differential equations SDEs driven by Poisson randommeasure satisfying the global Lipschitz condition and the linear growth condition. In this paper, Euler’s method is introduced for SDEs driven by Poisson random measure with non-Lipschitz coefficients which cover more classes of such equations than before. Themain aim...

متن کامل

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

An Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients

Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...

متن کامل

Numerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials

Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...

متن کامل

Convergence of the Stochastic Euler Scheme for Locally Lipschitz Coefficients

Stochastic differential equations are often simulated with the Monte Carlo Euler method. Convergence of this method is well understood in the case of globally Lipschitz continuous coefficients of the stochastic differential equation. The important case of superlinearly growing coefficients, however, remained an open question for a long time now. The main difficulty is that numerically weak conv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2005